Métodos y equipos de perforación

Existen distintos métodos de perforación de rocas, diferenciados principalmente por el tipo de energía que utilizan (Ej: mecánicos, térmicos, hidráulicos, etc.). En minería y en obras civiles, la perforación se realiza, actualmente, utilizando energía mecánica.

Métodos de perforación de rocas

Actualmente, en trabajos de minería -tanto a rajo abierto como en minería subterránea- y en obras civiles, la perforación se realiza utilizando energía mecánica, lo que define distintos métodos de perforación y componentes de perforación.

Los principales componentes de un sistema de perforación de este tipo son:

a) Perforadora, fuente de energía mecánica. b) Varillaje, medio de transmisión de dicha energía. c) Broca o bit, herramienta útil que ejerce energía sobre la roca. d) Barrido, efectúa la limpieza y evacuación del detrito producido.

Clasificación de las perforaciones

1. Según el método mecánico de perforación

a) Métodos rotopercutivos: son muy utilizados en labores subterráneas y trabajos menores en minería a cielo abierto (precorte), tanto si el martillo se sitúa en la cabeza como en el fondo de la perforación. En este método tiene lugar la acción combinada de percusión, rotación, barrido y empuje.

Perforación rotopercutiva: corresponde al sistema más clásico de perforación de rocas, utilizado desde el siglo XIX. En este tipo de perforación se emplea la acción combinada de percusión, rotación, empuje y barrido, ya sea en equipos manuales para labores menores (pequeña minería y obras civiles de poca envergadura) o mecanizados( principalmente en minería subterránea de gran escala; ej: minas subterráneas de Codelco) y en obras civiles de gran envergadura, como la construcción de una caverna o túnel carretero.

Las principales ventajas de este método de perforación, en comparación al método rotativo, son: Es aplicable a todos los tipos de roca, desde las más blandas hasta las más duras. Permite una amplia gama de diámetros de perforación (desde 1" hasta 8"). En el caso de perforación mecanizada, los equipos tienen gran movilidad (la perforadora puede ser montada en camiones sobre ruedas). Requiere de una persona para operar la perforadora.

b) Métodos rotativos: se subdividen en dos grupos, según si la penetración en la roca se realiza por trituración (triconos) o por corte (brocas especiales). El primer sistema se aplica en rocas de dureza media a alta y el segundo en rocas blandas. En este tipo de perforación no existe la percusión.

2. Según el tipo de maquinaria

a) Perforación manual: en este tipo de perforación se usan equipos ligeros operados por perforistas. Este método se utiliza en trabajos de pequeña envergadura, donde, principalmente por dimensiones, no es posible usar otras máquinas o no se justifica económicamente su empleo.

b) Perforación mecanizada: en una perforación mecanizada, los equipos van montados sobre estructuras llamadas orugas, desde donde el operador controla en forma cómoda todos los parámetros de perforación.

3. Según el tipo de trabajo

a) Perforación de banqueo: perforaciones verticales o inclinadas utilizadas preferentemente en proyectos a cielo abierto y minería subterránea (L.B.H.). Este tipo de perforación se emplea, en general, para la minería a cielo abierto y para algunos métodos de explotación subterránea, como el hundimiento por subniveles.

b) Perforación de avance de galerías y túneles: perforaciones preferentemente horizontales llevadas a cabo en forma manual o mecanizada. Los equipos y métodos varían según el sistema de explotación, pero por lo general, para minería en gran escala subterránea se utilizan los equipos de perforación llamados "jumbos", que poseen desde uno a tres o más brazos de perforación y permiten realizar las labores de manera rápida y automatizada.

c) Perforación de producción: con este nombre se conoce al conjunto de trabajos de extracción del mineral que se realiza en las explotaciones mineras. Una perforación de producción corresponde a la que se ejecuta para cumplir los programas de producción que están previamente establecidos.

d) Perforación de chimeneas y piques: se trata de las labores verticales, que son muy utilizadas en minería subterránea y en obras civiles. En ellas se emplean métodos de perforación especiales, entre los cuales destacan el Raise Boring y la jaula trepadora Alimak.

e) Perforación con recubrimiento: se utiliza por ejemplo, en perforación de pozos de captación de aguas y perforaciones submarinas.

Perforación con sostenimiento de rocas: este tipo de perforación se emplea principalmente en labores subterráneas cuando se requiere colocar pernos de anclaje, y se realiza como método de fortificación para dar así estabilidad al macizo rocoso.Equipos de perforación manual

Es el sistema de perforación más convencional de perforación, utilizado por lo general para labores puntuales y obras de pequeña escala debido principalmente a la facilidad en la instalación de la perforadora y a los requerimientos mínimos de energía para funcionar (un compresor portátil). Esto permite realizar labores de perforación en zonas de difícil acceso sin que sea necesario personal muy experimentado para la operación y mantención de las perforadoras, lo que significa un menor costo por metro perforado.
Para seleccionar la mejor alternativa o solución es necesario proceder sistemáticamente; primero un estudio previo, que permita recomendar una solución (a veces varias) y el año óptimo de su puesta en servicio. Luego viene la etapa de anteproyecto de la o las soluciones recomendadas y por último el proyecto de la obra completa. A continuación se indican las fases que se deben considerar al construir un túnel:

El objetivo de la obra subterránea
La geometría del Proyecto: trazado y sección tipo
La geología y geotecnia del macizo
El sistema Constructivo
La estructura resistente: el Cálculo
Las instalaciones para la explotación

Extracción con palas y volquetes.- La perforación y voladura en el frente de los bancos preceden a la extracción con palas y volquetes; después de la voladura un tractor limpia el piso del material desparramado y la pala comienza a cargar los volquetes, limpiando su frente hasta que el material alcanza su talud natural, enseguida toma la parte inferior más liviana, transladándose a lo largo del frente. Los volquetes se emplazan al costado de la pala, dando marcha atrás contra el frente disparado, a una distancia apropiada para la cuchara de la pala. Las orugas de la pala forman ángulo recto con el frente, para tener estabilidad durante la hinca e hizamiento de la cuchara.
La producción de la pala está influenciada por la altura del banco que debe ser algo inferior a su máximo alcance, al ángulo de giro de su brazo que debe ser mínimo para reducir el ciclo de carga y al buen grado de fragmentación del material.
Se determina cuidadosamente el número de paladas necesarias para llenar el volquete a plena capacidad y se planea la operación para que la pala esté en constante actividad.
Para ello es necesario cronometrar el ciclo de la pala, que consiste de los períodos de acomodo del volquete y la carga de éste con tres movimientos: hinca y llenamiento de cuchara, giro del brazo de la pala y vaciamiento del contenido de la cuchara en el cajón del volquete, cumple este mismo ciclo además del tiempo de viaje para acarreo del material y su descarga en las tolvas. Se deducen las relaciones siguientes:
Volquetes/Pala = (Ciclo volquete-Ciclo pala): (Ciclo pala + 1 Peso/Palada =(Capa-cuchara) (Densidad material esponjado) Paladas/ Volquete = (Capacidad volquete): (Peso por palada) Ciclo pala = Acomodo + Carga; (Carga en tres movimientos) Ciclo volquete = Acomodo + Carga + Acarreo y vuelta + Descarga


1.-TIPOS DE ROCA:

Rocas Igneas: Son las que provienen del Magma Ígneo, que es una masa de roca fundida, formada de silicatos, gases y vapor de agua, y que se ubica en la zona más externa del manto y en la zona inferior de la corteza terrestre.

Rocas Extrusivas : Si salen a la superficie de la tierra en estado de fusión, y luego se enfrían rápidamente. Ejemplo: Bansalto, Andesita,Oesidiana.

Rocas Intrusivas: Si no alcanzan a llegar a la superficie de la tierra y se quedan en cavernas subterráneas Ejemplo: Uranito, Diorita, Diabasa.

Rocas hipabisales: Son aquellas que se forman en condiciones intermedias entre las intrusivas y las extructivas.

Rocas sedimentarias:  Sedimentaria clásicas: (Clasto = partícula). Provienen de rocas desintegradas arrastradas por ríos y depositadas en capas que son sometidas durante un considerable período de tiempo a elevadas temperaturas y presiones.Ejemplos: Areniscas, conglomerados, Brechas.

Sedimentarias químicas: Provienen del transporte de partes duras de organismos marinos mezclados con arena y arcillas, este transporte es provocado por las corrientes costeras. Ejemplos: Caliza, Dolomita, Sal, yeso.
Sedimentarias orgánicas: Están formadas por restos orgánicos. Ejemplos: Carbón, Diatomita.

Rocas metamórficas: Provienen de un largo proceso de reclistarización de otras rocas, que se produce a altas temperaturas (entre 100 y 600 grados C) y altas presiones (miles de atmósferas), con un aumento de densidad. Las rocas metamórficas son rocas ígneas o sedimentarias que se han transformado mineralogíca y estructuralmente por un proceso que se llama Metamorfismo.

1.1.- Tipos de metamorfismos:

Metamorfismo de contacto: Se trata del metamorfismo inducido en las rocas por su cercanía a rocas ígneas intrusivas. Los cambios son mayores al acercarse al contacto, se habla de Aureola de contacto.

Metamorfismo regional: Se presenta en áreas extensas (miles de Km.2). Se estima que se debe a concentraciones periódicas de calor, ubicadas en profundidad, que suministraron la energía para causar este metamorfismo.

1.1.1.- Clasificación de las rocas metamórficas:

Rocas Foliadas: (Foliación: estructura en láminas por agregación de cristales en capas). La foliación más o menos plana en la roca, se debe a la Esquistocidad, que es una estructura paralela de origen metamórfico. Ejemplos: pizarras, con esquistocidad plana perfecta, esquistos, (metamorfismo regional de conglomerados y areniscas).

Rocas no Foliadas: Al no ser Esquistosas, tienen como uniforme. Ejemplos: granulitas, corneanas, mármol.

 EL PROBLEMA DE LA EXCAVACION EN ROCA: Los medios necesarios para realizar una excavación varían con la naturaleza del terreno, que desde este punto de vista, se pueden clasificar en:

Terrenos sueltos
Terrenos flojos
Terrenos duros
Terrenos de tránsito
Roca blanda
Roca dura
Roca muy dura

3.- CARACTERISTICAS Y PELIGROS DE LOS DISTINTOS TIPOS DE ROCA.

Caliza: Fácil de excavar; consumo reducido de explosivos y barrenos. Pueden encontrarse cavernas, a veces de grandes dimensiones, y manantiales de agua importantes. No suelen hallarse gases peligrosos.

Arenisca: Fácil de excavar; consumo de explosivos normalmente menor que en la caliza; mayor consumo de barrenos. No suele presentar discontinuidades ni se encuentran grandes manantiales de agua.

Pizarras: De excavación fácil; según su naturaleza y de la inclinación de los estratos, suele encontrarse poco agua, aunque a veces se presentan manantiales importantes cuando la capa freática está sobre la excavación. Las pizarras pueden ir asociadas al yeso y al carbón; en el caso del segundo, puede existir el metano, gas explosivo muy peligroso; puede hallarse también el hidrógeno sulfurado, mortal, aunque en pequeñas cantidades.

Rocas graníticas: Generalmente fáciles de excavar; no se necesita entibar y el revestimiento preciso es, normalmente, pequeño; el consumo medio de los explosivos es más del doble que en la arenisca normal; el de barrenos, depende de la naturaleza de la roca, que varía entre límites muy amplios; aunque, normalmente, las condiciones de esta roca son favorables, de vez en cuando pueden encontrarse manantiales de agua con grandes caudales.

Rocas volcánicas: Las rocas volcánicas son costosas de barrenar y precisan importante consumo de explosivos; suelen encontrarse estratos de tobas descompuestas que dan lugar a grandes manantiales, como también gases peligrosos, tóxicos o explosivos.


EL COSTO DE LA EXCAVACIÓN EN ROCA: El coste de la excavación en roca varía ampliamente con sus características, la diferencia de metros lineales de barreno precisos para excavar un metro cúbico es muy grande , de unos tipos de rocas a otras; puede ser más de el doble cuando la roca parte mal; como el rendimiento por hora de la perforación también varía ampliamente de 0.5 a 5 m. Lineales, y el consumo de explosivos también es muy distinto, se comprende que la variación del coste de la excavación en roca pueda oscilar grandemente, según el tipo de roca, e incluso, dentro de la misma clase, entre que parta bien o mal, característica que depende de el número o situación de los planos de rotura. Al fijar el precio de una excavación en roca, hay que proceder, por tanto, con la máxima prudencia, y previo un reconocimiento cuidadoso del terreno.

Excavación con explosivos: Durante muchos años ha sido el método más empleado para excavar túneles en roca de dureza media o alta, hasta el punto de que se conoció también como Método Convencional de Excavación de Avance de Túneles. La excavación se hace en base a explosivos, su uso adecuado, en cuanto a calidad, cantidad y manejo es muy importante para el éxito de la tronadura y seguridad del personal, generalmente se usa dinamita. La excavación mediante explosivo se compone de las siguientes operaciones:

Perforación
Carga de explosivo
Disparo de la carga
Saneo de los hastiales y bóveda
Carga y transporte de escombro
Replanteo de la nueva tronadura

Excavaciones mecánicas con Máquina: Se consideran en este grupo las excavaciones que se avanzan con maquinas rozadoras; con excavadoras, generalmente hidráulica - brazo con martillo pesado o con cuchara, sea de tipo frontal o retro-; con tractores y cargadoras (destrozas) e, incluso, con herramientas de mano, generalmente hidráulicas o eléctricas.
Excavación mecánica con máquinas integrales no presurizadas: Esta excavación se realiza a sección completa empleando las máquinas integrales de primera generación o no presurizadas. Otro rasgo común es que, en general, la sección de excavación es circular.
Excavación mecánica con máquinas integrales presurizadas: La baja competencia del terreno suele asociarse a casos de alta inestabilidad y presencia de niveles freáticos a cota superior a la del túnel la primera solución aplicada a los escudos mecanizados abiertos para trabajar en estas condiciones fue la presurización total del Túnel.

5.1.- Túneles de pequeña sección: La sección transversal de un túnel de pequeña sección puede ser alrededor de 4 m2. Esta área proporciona espacio para poder instalar la tubería de ventilación y el uso de equipos pequeños de excavación.



Túneles de sección 4 a 6 m²: En este tipo de sección normalmente se puede utilizar perforadoras manuales neumáticas con empujadores. Atlas Copco fábrica tres máquinas para diferentes características de rocas:

Puma BBC 16 W. Esta perforadora es muy eficaz para la perforación frontal en todo tipo de roca. Esta diseñada con un control centralizado tanto para la perforación como para controlar la fuerza de avance del empujador.
Leopardo BBC 34 W. Perforadora para trabajar en todo tipo de roca, con un sistema de rotación apropiado para taladros largos. Esta diseñada con un control centralizado tanto para la perforación como para controlar la fuerza de avance del empujador.
Pantera BBC 94 W. Perforadora semi pesada para trabajar en todo tipo de roca, con un sistema de rotación apropiado para taladros largos. Esta diseñada con un control centralizado tanto para la perforación como para controlar la fuerza de avance del empujador.
Para perforaciones de gran tamaño de barrenos paralelos, las perforaciones grandes se escarian a 64 ó 76 mm.
El diagrama de perforación para un túnel tan pequeño comprende perforaciones de corte y contorno y el número de perforaciones puede ser del orden de 26 + 1 perforación de escariado, si la periferia es cargada con explosivo amortiguado o liviano. Si la periferia no es cargada con explosivos amortiguados, el número de perforaciones es de 21 + 1.

Explosivos apropiados: Dinamita encartuchada o emulsión en tiros de corte y destoza. Explosivo amortiguado o liviano con un diámetro de 17mm en tiros de contorno, o 40 a 80 gramos por metro en cordón detonante. (detonadores no eléctricos tipo NONEL)



Tuneles de seccion 6 - 20 m²: Cuando aumenta la sección transversal de una galería es posible usar un equipo de perforación más eficiente. Atlas Copco provee tres poderosos equipos de perforación para túneles pequeños:

Rocket Boomer H 104-38 COP 1238, de un brazo, equipo pequeño para áreas de túneles de 6 a 20 m².
Boomer H 281-38 COP 1238, de un brazo, equipo de alta capacidad para áreas de túneles de 6 a 31 m².
Boomer H 282-38 COP 1238, de dos brazos, equipo de alta capacidad para áreas de túneles de 8 a 45 m².

El equipo puede ser suministro para el traslado por vía férrea o sobre carretera, con ruedas de goma.

5.3.-Túneles de mediana sección: Los túneles de sección entre 20 a 60 m2 son comúnmente empleados en la construcción de plantas hidroeléctricas, construcción de caminos, ferrocarriles minería cavernas o depósitos subterráneos, etc.


 Atlas Copco  provee una amplia gama de equipos de perforación para el desarrollo de túneles de mediana sección.

Rocket Boomer 282, equipo de perforación electro hidráulico con dos brazos paralelos para secciones de túneles de 8 - 45 m².

Rocket Boomer M2, equipo de perforación electro hidráulico de alta potencia con dos brazos paralelos para secciones túneles hasta de 45m².

Rocket Boomer L2, equipo de perforación electro hidráulico de alta potencia para áreas de túneles hasta de 90 m².


PERFORACION O BARRENADO: Existen diferentes equipos y accesorios para realizar un barrenado o perforación en roca, las que de acuerdo con la forma en que se desarrollan su trabajo, se dividen en máquinas rotativas y de percusión.


Maquinas Rotativas: Realizan la perforación por medio de una herramienta cortante giratoria en forma de corona, que puede estar revestida de materiales en movimiento granallas. El efecto cortante es determinado por la velocidad de rotación, el poder abrasivo de la corona, la presión ejercida por el mecanismo de avance y el peso de varillaje y de herramientas. La naturaleza de la roca, además de los factores señalados determina la velocidad de avance.

Maquinas de Percusión: Las máquinas de percusión realizan su trabajo por medio de una herramienta cortante o trepano que golpea sobre el fondo de la perforación; los bordes agudos de la herramienta cortan la roca y el mecanismo de rotación de la maquina hace girar la broca a una nueva posición por cada golpe. Los factores que fundamentalmente determinan la velocidad de avance son: el número de golpes por minuto y la naturaleza de la roca.

Perforadoras de Percusión:

Jacklegs”: Debido a su facilidad para barrenar en cualquier posición, esta máquina fue la más utilizada en las galerías de Ralco y Pangue. Además es liviana, fácil de manejar y basta con un solo operario para realizar barreno.

“Guagua”: Es una máquina liviana equipada con mangos, para trabajar con ella a pulso. Debido a su poco peso y pequeño tamaño, es muy apropiada para barrenar en lugares estrechos. Este tipo de perforadora es de uso general en trabajos de superficie y en el interior de túneles.

 Barrenos: La forma más corriente de empleo de explosivos en cámara cerrada es el barreno. En la roca a remover se practican una serie de agujeros de diámetro y profundidad variable, bien a mano o bien con medios mecánicos (martillos perforadores); la carga de explosivos se coloca en el fondo del orificio, con una altura tal que en la parte superior quede espacio suficiente para cerrar la salida de la manera más perfecta posible, rellenando con material escogido, bien comprimido, para evitar que los gases encuentren en el orificio del barreno la línea de menor resistencia, en cuyo caso se perdería una parte importante de la eficacia de la explosión; cerrar herméticamente es fundamental para el rendimiento de la explosión. La longitud del cierre no debe ser menor de 200 mm. para 100 grs. de carga, y 50 mm. Más para cada 100 grs. más de explosivos, con un máximo práctico de 50 mm.; el cierre puede hacerse con arena fina o arcilla ligeramente húmeda, terminando con yeso o cemento rápido. Cuando el cierre no está bien hecho, sale por él, en pura pérdida, parte de la fuerza de la explosión; entonces se dice que el barreno ha dado "bocazo". Los barrenos que por cualquier causa no hubieren hecho explosión después de haberles dado fuego, no deberán de ninguna manera vaciarse, se volarán con nuevos barrenos colocados.

Mecanismo de las maquinas perforadoras para entibaciones


Componentes fundamentales: Los componentes fundamentales de las perforadoras son:

El cilindro, el émbolo o pistón, las válvulas de paso para el aire y el agua, el mecanismo de rotación, el tubo de inyección de agua o bombilla, las conexiones para aire comprimido y agua, con sus respectivas llaves de paso.
Otros componentes importantes son: la bocina, que sirve para sostener el culatín de las brocas y transmitir el movimiento giratorio, el freno u orquilla provista de resortes para la retención de la broca, los tirantes, que mantienen unidos las partes que componen la carcaza de la máquina.

Funcionamiento: El aire comprimido a la presión de 80 a 90 libras por pulgada cuadrada, origina un movimiento de percusión y otro de rotación. El movimiento de percusión es el que produce el avance, y el de rotación tiene por objeto cambiar la posición de la cabeza para cortar mejor la roca y darle la forma a la perforación.

Los movimientos y golpes se transmiten a la broca o barra, en cuyo extremo va colocada la cabeza, que es la herramienta que corta la roca. El agua entra por el cabezal de la máquina continúa por la bombilla, sigue por el orificio central de la broca, y es inyectada al frente de la perforación, a través del orificio de la cabeza misma. La arena resultante es acarreada fuera del hoyo por el agua y el aire comprimido.
Normalmente es necesario entibar la excavación; solamente en terrenos muy consistentes es posible reducirla o suprimirla a un mínimo cuando el túnel tenga una profundidad pequeña y por la consistencia del terreno no sea precisa la entibación, hay que procurar que el revestimiento vaya inmediatamente después de la excavación, pues no hay que olvidar cuanto se dijo a cerca del comportamiento del terreno: una excavación que se mantiene perfectamente sin entibar recién ejecutada, puede derrumbarse al cabo de un cierto tiempo, aunque sea parcialmente, con grave peligro para el personal y con grave trastorno económico.
Con objeto de lograr la máxima economía en el volumen del material, mano de obra y rapidez en las operaciones de montaje y desmontaje, la forma de entibar los túneles debe estar inspirada en los siguientes principios: a) Todos los elementos de la estructura deben trabajar a compresión, evitando disposiciones que produzcan flexiones; b) La longitud de las diferentes piezas debe reducirse con puntales, para evitar la flexión; c) Las juntas de unión deben ser sencillas, para evitar gastos inútiles en su ejecución y en la mano de obra de montaje y desmontaje; d) La disposición general de la estructura debe permitir la fácil extracción de los escombros y ejecución de la fábrica del revestimiento; e) Se deberá disponer la entibación de manera que pueda ser fácilmente reforzada sin modificar la disposición general; debe preverse al proyectarla donde y como debe ser colocada la madera de refuerzo, si se necesitase con objeto de que no estorbe el trabajo; f) No ha de ser posible cambiar, si fuese necesario, los distintos elementos de la entibación produciendo el menor trastorno en el conjunto; g) Con el objeto de que el material de la entibación no sea sometido a trabajo excesivo, se debe llevar la obra de revestimiento lo más cerca posible de la excavación; se obtendrá de este modo no solamente una economía en el volumen total de la madera a emplear, si no también en sus dimensiones.
El material corrientemente usado es la madera. Como las cargas a que la entibación esta sometida alcanzan, a veces, valores enormes ( 200 toneladas por metro cuadrado y aún superiores), las escuadrías que es posible dar al material no pueden ser las precisas para que los coeficientes de seguridad alcanzan los valores corrientes de 3 y 4, pues resultaría carísimo y no quedaría en la excavación espacio para que los trabajos se desenvolviesen; como los coeficientes de seguridad que se adoptan son muy bajos, hay que observar constantemente la entibación y sustituir, antes de su rotura, aquellas piezas que empiecen a averiarse. Las maderas corrientemente empleadas son el pino y el abeto

2 Responses to “Métodos y equipos de perforación”

Qué dificil es encontrar este tipo de material en internet. Excelente redacción. Me encanta ver personas que comparten la pasión del mundo de las perforaciones y sondeos subterraneos. Mi blog sobre las perforaciones <a href="http://www.lasperforaciones.com>http://www.lasperforaciones.com</a> por si tiene tiempo de visitarlo y dejar sus comentarios. Ojala podamos colaborar. Un abrazo.

Anónimo dijo...

Expo EcoCIPLima 2014, Medio Ambiente y Agua
Colegio de Ingenieros del Perú
Consejo Departamental de Lima - Decanato
Perú - Lima - San Isidro
27, 28 y 29 de Agosto
Informes y reservas 24H: eventostecnologicos2@ciplima.org.pe

Publicar un comentario en la entrada


contador